REDEFINITION OF THE LITORIA LATOPALMATA SPECIES GROUP (ANURA: HYLIDAE)

by Margaret Davies,* Angus A. Martin† \& G. F. Watson \dagger

Abstract

Summary Davies, M., Martin, A. A. \& Watson, G. F. (1983) Redefinition of the Lioriu lalopalriaza species group (Anura: Hylidae) Trans, R. Soo. S. Aust, 107(2), 87-108, 31 May, 1983.

The Litoria lalopalmara species group is composed of four terresirial species characterized by unwebbed fingers, moderately webbed toes, poorly expanded finger and toe dises and variously developed lateral head stripes. The calls of all species are complex and consist of hoth short and long notey that are quite distinctive. Lavvae of each species are very similar and of typical Lituria lentic form with 43 tooth rows, Ostedogy is conservative and differences between species are slight, Morphological characters separating species include rugosity of the skin, size of finger and toe dises, developenent of head and tibial stripes and differential thigh markiogs. Species included in the group are Litovia latopalmula Günthel, E. inermis (Peters), L. torvier (Nieden) and L. pallida sp. nov. The species grotp has beeo redefined in the light of morphological, call, laryal and osteological data presentect.

KEY WORDS: Anura, Hylidae, Litorid, mocpbology, osteology, larvae, mating calls, distribution.

Introduction

The Australopapuan hylid frog genus Litoria Tychuci is a heterogeneous assemblage of species including frogs that can be described as 'tree frogs', with greatly expanded finger and tac discs and extensive webbing, as wel as terrestrial species with unexpanded discs, long limbs and poor weliting. These latter species were called 'ground hylids' by Moore (1961).

Amongst the ground bylids is a homogeneaus collection of species referred to as the Liforia latopalimata species group by Tyler and Davies (1978), The group includes L. katopalmata Günther, L. inermis (Peters) and L. Cornefi (Nieden). The former two species have tieen recorded as having an extremely wide geographic range across north and east Australia (Moore 1961. Tyler 1968b, Straughan 1969, Cogger 1979. Barker and Grigg 1977), Tyler (1977) reported the occurrence of L. Iatopalmata in South Australia. Many of these authors have suggested that specimens referred to L. latopalmala may represent more than one species.

Here we redefine the described species and describe one new species referrable to the L., latopalmala species group, based on our studies of comparative morphology, osteology and breeding biology.

[^0]
Materials and Methods

The specimens reported here are deposited in institutions abbreviated in the text as follows: AM, Australian Museum, Sydney; AMNH, American Museum of Natural History, New York; BMNH, British Museum (Natural History), London; KU, University of Kansas. Museum of Natural History, Kansas; NTM, Northern Territory Museum, Darwin, QM, Queensland Museum, Brisbane; SAM. South Australian Museum, Adelaide: WAM, Western Australian Museum. Perth: QPN, Queensland National Parks and Wildlife Service; RMNH, Rijksmuseum van Natuurlijke Historie. Leiden, UAZ, University of Adelaide, Department of Zoology. UAZ specimens are all cleared and stained skeletal preparations.

Methods of measurement follow Tyler (1968a) and ostenlogical descriptions follow Trueb (1979). Tadpoles were fixed in Tyler's (1962) fixative and staged according to Gosner (1960). Osteological specimens were cleared and stained for bone after Davis \& Gore (1947). Measurements were made using dial calipers or an eyepiece micrometer.

Measurements taken of adults were: snout to vent length (S-V); tibia length (TL); head length (HL): head width (HW); eye to natis distance ($\mathrm{E}-\mathrm{N}$) ; internarial span (IN): eye diameter (E): tympanum diameter (T), The following ratios were calculated: TL/S-V: HL/HW: HL/S-V: E-N/IN, Total length (ti) and body lengths (bi) of latvae also were re-
corded. Where appropriate, means \pm S.D. arc given.

Calls were recorded using a Sony TC 510-2, Uher 4000 or Sharp 4D492 tape recorder with dynamic microphones. Wet-bulb air temperatures were mcasured with a Schultheis quickreading thermometer close to the calling sites of males. Calls were analysed by means of a sound spectrograph (Kay Model 6061-B SonaGraph) with the overall response curve maintained in the FL-1 position. Temporal characteristics of calls werc determined from wideband (300 Hz bandpass) and spectral characteristics from narrow-band (45 Hz bandpass) spectrograms. Two or three examples of each kind of call note given by each male were analysed and mean values were calculated.

Calls of all of the species examined share the same general structure. Two distinct kinds of note are produced; these we have designated 'long calls' and 'short calls'. Each male typically emits call notes in long sequences, usually commencing with short calls and then switching to the production of long calls. Occasionally there are also notes which appear transitional between short and long calls, but we have not attempted to analyse such transitional notes. For each species we present
analyses of what wc consider to be typical short and long call notes. Most calls are welltuned, with harmonic bands across a fairly widc frequency range. We have taken the dominant frequency as the band or bands containing the most energy. Although our call samples are clearly inadequate, the data are included because they assist specific diagnoses.

The following abbreviations are used in locality data: S.F., State Forest, N.P., National Park, Ck, Creek, Hstd, Homestead.

Litoria latopalnata Günther

FIGS 1-7

Litoria latopalmata Günther 1867, Ann. Mag nat. Hist. ser. 3, 20:55
Hyla latopalmata: Boulenger 1882, p. 414; Nieden 1923, p. 227

Hyla palmata: Slevin 1955 (lapsus pro Hyla latopalmata) p. 383
Litoria latopalmata: Tyler 1971 (partim), p. 353
Definition: A moderately small, ground-dwelling species (females $36-42 \mathrm{~mm}$, males $29-39$ mm) characterised by unwebbed fingers with slightly expanded discs, first finger slightly longer than second, moderately long hind

Fig. 1. Litoria latopalmata, in life (Watagan, S. F., N.S.W.).
limbs (TL/S-V 0.57-0.75), well developed lateral headstripe with white preocular bar, grey or brown dorsum, occasionally mottled. Redescription: based on SAM R19717, a mature male collected north of Maryborough, Qld by K. R. McDonald on 10.xii. 1977.

Head broader than long (HL/HW 1.23). Head length more than $1 / 3$ snout to vent length (HL/S-V 0.40). Snout prominent,
projecting in profile (Fig. 1), sharp when viewed from above and very gently rounded in profile. Nostrils more lateral than supcrior, their distance from end of snout about $2 / 3$ that from eye. Distance between eye and naris less than internarial span ($\mathrm{E}-\mathrm{N} / \mathrm{IN}$ 0.97). Canthus rostralis well defined and straight, its nature accentuated by dark rostral stripe. Eye moderately conspicuous, its dia-

Fig. 2. Lateral view of the heads of a, Litoria pallida (SAM R19539), b, L. inermis (from Qld, SAM R19558), c, L. inermis (from W. Aust.), d, L. tornieri (SAM R19572) and e, L. latopalmata (SAM R19682).

Fig. 3. A. Palmar view of hand and B, plantar view of foot of Litoria latopalmata (SAM R19539).
meter about $1 / 3$ longer than eye to naris distance. Tympanum completely visible, its diameter $\frac{3}{4}$ eye diameter (Fig. 2).

Vomerine teeth on short oval projections at 45° to choanae. Tongue broadly oyal. Fingers long and slender, slightly frioged (Fig. 3 A) ; in order of length $3>4>1>2$. No webbing between fingers. Terminal discs slightly expanded just extending laterally beyond the fringes of the penultimate phalanx. Subarticular and paimar tubercles prominent. Small supernumerary tubercles present.

Hind limbs long (TL/S-V 0.65). Toes in order of length $4>3>5>2>1$ (Fig. 3B), Webbing reaches midpoint of penultimate phalanx on toe 5 and to subarticular tubercles at base of antepenultimate phalanx on toe 4 . Subarticular tubercles prominent. Well developed supernumerary tubercles on metatarsals 3 and 4. Small oval inner and tiny, round, outer metatarsal tubereles.

Dorsum smooth, abdomen, pectoral region ventral and posterior thighs coarsely granular. Submandibular area smooth. Well developed tarsal and supratympanic folds.

Dorsum grey; conspicuous lateral headstripe from nostril to eye, interrupted by cream preocular bar, extending behind the eye over and through the tympanum to the insertion of the forearm. Thin white line extends from below eye to end of mandibular region. Disrupted dark patches extend to flanks. Mandibular margin variegated with dark and light

Fig. 4. Backs of thighs showing pigment reticulations: a, Litoria pallida, b, L. tarnieri, c. L. latopalmata, d, L. inermis.
patches which extend around upper jaw, Faint dark patch present on wrist.

Backs of thighs pale yellow with discrete patches of brown pigmentation (Fig. 4). Thin disrupted dark stripe along anterior edge of tibia and tarsus, and on plantar surface of tarsus and foot.

Gular region lightly suffused with pigment Brown bilobed nuptial pad present.
Material examined: BMNH 1947.2.24 (syntype) Port Denison (Bowen) Qld. Queensland: SAM R19711-29 N of Maryborough; SAM R1969419710, Conondale Ra., QPN N28404, N28434. N28454-63, N28472 Ambathala Nature Reservc; SAM R19671-81, Bellthorpe, S. F., Conondale Ra., SAM R19683-93, Eungella N.P.; QM J31364,
131370. Conondale Ra:; QM J31374-5, below Boombana N.P. Mi Nebo Rd; QM 135796. Ferguson, 6 km N of Maryborough; UAZ A66. Eungella N.P.: UAZ. A67-8. A522, Belithorpe S. F., Conondate Ras: UAZ A521, Ambathala Nature Rescrve; N.S.W.: SAM R12200-2, Ulong; SAM R19670, Penshurst: SAM R19669. Sherwood S, F., SAM R12196-9, Camden; SAM R12194-5, Tumbi Umbi; QM 131376-8, Back Creek Rd oft Tenterficld-Bonshaw Rd; S.A.: SAM R15840, Moombs.

Variation

Head broader than long (HL/HW 1.24土 $0.05,1.10-1.40)$: head length greater than $1 / 3$ snout io vent length (HL/S-V 0.39土0.02, 0.34-0.42). Distance betwoen eye and naris usually less than intermarial span ($0.94 \pm 0,10$, 0,77-1.38) .

Hind limbs consistently long (TL/S-V 0.64 $\pm 0.03,0.56-0.75)$. Dorsum grey or mottled. Tibial stripe interrupted in many specimens, but entire in others.

Osteology

Skull moderately well ossified with well ossified neurocranium. Sphenethmoid well assified exteoding between nasals dorsally almost to their anterion extremities, ventrally extending anteriorly to dentigerous processes of prevomers. Nasals overlying sphenethmoid along their medial edges (Fig. 5A). Prontic and exoccipital fused. Exoccipital entire. Crista parotica well developed, moderately long and stocky. Otic ramus of squamosal
expanded posteriorly, just articulating with distal edges of crista parotica,

Frontoparictal fontanelle extensive, extending anteriorly to level of palatines, posteriorly to suture of frontoparietal and exoccipital region. Orbital edges of frontoparietals straight, Nasals moderately large, maxillary processes acuminate, not articulating with well developed preorbital processes of pars facialis of maxillary,

Palatines moderately long, expanded disLally, tapering more medially to overlie sphenethmoid, Parasphenoid robusi, cultriform process subacuminate, long, almost reaching to level of palatines. Alae broad, at right angles to cultriform process, expanded distally, and overlapped by medial arm of pterygoid (Fig. SB),

Ptorygoids moderately robust, anterior arm in short contact with palatal shelf of maxillary. No obvious pterygoid process of palatal shelf. Medial arm well developed, rounded terminally. Quadratojugal slender and fully articulated. Squamosal moderately robust; zygomatic ramus acuminate, slightly shorter than otic ramus. Maxillary and premaxillary dentate.

Pars facialis moderately shallow, well developed preorbital process. Alary processes of premaxillaries elongate laterally and curved posterolaterally, Palatine processes of premaxillaries well developed, not abutting medially. Prevomers slightly reduced medially, with short dentigerous process slightly angled to midline. Bony columella present

Fig, 5; A, Dorsal and B, ventral views of shull or Litoria lelopalrnata (UAZ A522).

Table: 1: Physical charactertstics of calls of mates of the L. Futopalmata speries group. Mean values are given with ranges in parentheses, $P R R=$ pulse repetum rate. Details of localities are: $1,30 \mathrm{~km} \mathrm{~W}$ Coonabarabran, NSW, 20.x.1964: 2, Mitehell Plateau, W. Aust, 27i.1978; 3, Coen Airport, Qid, 7 iii. 1979; 4, Lakefictd NP., Qld, $25, i$.1981; 5, Gumbent Ck Crossing, Amhem Hıghway, N.T, I ii.1979; 6, Birndu. N.T., $30 . \times 1.1978$.

			Short Call				Long Call				
Species, locality and date		N	Duration misec	No. $6{ }^{\prime}$ pulses	PRR palses/ sec	Domi freq. Hz	Duration misec	No. of pulses	PRR pulses sec	Dom. freq. Hz	$\begin{aligned} & \overline{\text { Wet }} \\ & \text { bulb } \\ & \text { temp } \end{aligned}$
L. lotopalmata	1	1	$\begin{gathered} 52.5 \\ (45-60) \end{gathered}$	$\begin{gathered} 7 \\ (6-8) \end{gathered}$	$\begin{gathered} 114 \\ (111-117) \end{gathered}$	2900	$\begin{array}{r} 88.3 \\ (85-90) \end{array}$	$\begin{gathered} 12 \\ (11-13) \end{gathered}$	$\begin{gathered} 124.3 \\ (118-133) \end{gathered}$	2900	9.
1. incrmis	2	1	37	$\begin{array}{r} 75 \\ (7-8) \end{array}$	$\begin{gathered} 175,5 \\ (162-189) \end{gathered}$	3000	$\begin{gathered} 175 \\ (105-185) \end{gathered}$	$\begin{gathered} 39.7 \\ (37-41) \end{gathered}$	$(216$	3300	24.0
	3	1	$\begin{gathered} 27.3 \\ (27-28) \end{gathered}$	7	$\begin{gathered} 2143 \\ (214-222) \end{gathered}$	4250	$\begin{array}{r} 66.7 \\ (60-75) \end{array}$	$\begin{gathered} 17.7 \\ (16-20) \end{gathered}$	$\begin{aligned} & 249.7 \\ & (246-253) \end{aligned}$	3850	24.
	4	1	$\begin{gathered} 36 \\ (35-37) \end{gathered}$	8	$\begin{gathered} 1043 \\ 4189-200) \end{gathered}$	4300	$\begin{gathered} 105 \\ (100-110) \end{gathered}$	$\begin{gathered} 27.7 \\ (27-29) \end{gathered}$	$\begin{gathered} 254.3 \\ (248-260) \end{gathered}$	4100	25.4
L. Lernieri	5		$\begin{array}{r} 58.3 \\ (65-70) \end{array}$	$\begin{gathered} 11.3 \\ (10-12) \end{gathered}$	$\begin{gathered} 150.8 \\ 1138-1571 \end{gathered}$	2000	$\begin{gathered} 128.3 \\ (115-140) \end{gathered}$	$\begin{gathered} 23.8 \\ (22-25) \end{gathered}$	$\begin{gathered} 178.2 \\ (171-183) \end{gathered}$	1850	25.0 26.0
	6	1	$(27-60)$	10	$\begin{gathered} 152.7 \\ (150-158) \end{gathered}$	1950	$\begin{gathered} 198.3 \\ (795-200) \end{gathered}$	35	$\begin{gathered} 176 \\ (171-179) \end{gathered}$	1950	27.2
2. pallida	5	1	30	$\left(\begin{array}{r} 5.5 \\ \left(5-f^{2}\right) \end{array}\right.$	$\begin{gathered} 150 \\ (133-107) \end{gathered}$	1500	$\begin{gathered} 3,37.5 \\ (330-345) \end{gathered}$	$\begin{gathered} 63.5 \\ (61-66) \end{gathered}$	$\begin{aligned} & 185 \\ & (182-188) \end{aligned}$	$\begin{aligned} & 1500, \\ & 3300 \\ & 4000 \end{aligned}$	25.0
	3	1	$\begin{array}{r} 22.5 \\ (20-25) \end{array}$	$\begin{array}{r} 35 \\ (3-4) \end{array}$	$\begin{gathered} 110 \\ (100-120) \end{gathered}$	$\begin{aligned} & 1450, \\ & 4150 \end{aligned}$	$\begin{gathered} 455 \\ (450-460) \end{gathered}$	$\begin{array}{r} 81.3 \\ (78-84) \end{array}$	$\begin{gathered} 176.3 \\ (171-180) \end{gathered}$	$\begin{array}{r} 3400 \\ 4150 \end{array}$	25.8

Pectoral girdle arciteral and robust. Omosternum and xiphisternum present. Clavicles moderately slender, slightly shorter than scapula and closely applied medially. Coracoids moderately separated. Suprascapula about 2/3 assificed.

Eight procoelous, nonimbricate, presacral vertebrae, Medial dorsal ossification incomplete on vertebrae I, 11, III and IV, Relative widihs of transverse processes: $\mathrm{III}>\mathrm{IV}>\mathrm{V}$ II $>$ sacrum $=$ VI $>$ VII $>$ VIII. Sacral diapophyses poorly to moderately expanded; ilia extend anteriorly beyoud expansion. Bicondylat sacrocrococcygeal articulation. Well developed crest extending $\frac{7 \text { length of urostyle. }}{\text { den }}$

Phalaugeal formula of hand 3,3,4,4: well developed bony prepollex. Phatangeal formula of foot 3,3,4,5,4; well developed bony prehallux. Terminal phalanges claw shaped.

Variation

Prevomerine teeth are sometimes horizontally oriented, rather than sifighty angled to midline. The maxillary processes of the nasals
occasionally articulate with the perorbital processes of the pars facialis of the maxillaries.

Brceding Biology

Cull: Physical characteristics of the calls of a New South Wales male are shown in Table 1 and audiospectrograms of short and long calls in Fig. 6. This species shows the least differentiation between short and long calls; both are well-tuned notes. Caution must be used in comparing these calls with those of the other species because of the much lower recording temperature.

Early development: Unknown.

Distribution

This species is confined to eastern Australia (Fig. 7). The type locality is Port Denison (Bowen) Qld and the species extends south through Queensland to northern N.S.W. A specimen was collected at Gidgealpa Waterhole in South Australia in 1976 (Tyler, 1977).

Litoria latopalmata is an open forest species hreeding in temporary, summer cain-filled

[^1]

[^2]

Fig. 7. Distribution of Litoria Latopalmata and L. cortieri in Australia. Open symbols indicate literature records and closed symbols specimens examined in this study. Stars indicate type localities. L. latopalmata records $=$ circles, L. tortieri records $=$ triangles.
pools. It is sympatric with L. inermis at many localities.

Comparison with other species

Litoria latopalmata can be distinguished from all terrestrial congeners, other than members of the Litoria aurea, L. freycinetl and L. latopalmata species groups, by its poorly expanded finger discs. The members of the L. aurea group differ in gross habitus and size and the L. freycineti group have relatively longer hind limbs. L. latopalmata can be delineated from other members of its species group in the following ways. From L, inermis, L. latopalmata can be distinguished by its relatively smooth dorsum and well defined canthal stripe and from L. tornieri, by its longer hind limbs (TL/S-V 0.64 ± 0.03 compared with $0.57 \pm 0,04)$, slightly greater webbing between toes four and five and by the slight expansion of its finger and toe discs beyond the edges of the penultimate phalanges, L. latopalmata is distinguished from L. pallida by its larger size $(28-37 \mathrm{~mm}$ male, $\quad 36-42 \mathrm{~mm}$ female, compared with $27-34 \mathrm{~mm}$ male, 3137 mm female) and slightly expanded dises. Litoria latopalmata shows the least differentiation between long and short calls, with long calls being shorter than in all other species.

Litoria inermis (Peters)

FIGS 2, 4, 6, 8-13
Chiroleptes incrmis Peters, 1867, Mhere dt. Akad. Wiss. Berlin 1867: 30

Phractops inermis: Nieden 1923, p, 524
Cyclorana inermis: Parker 1940, p. 17
Hyla latopalmata: Tyler 1968b (partim) p. 719
Hyla inernis: Straughan 1969, p. 208
Litoria inermis: Tyler 1971, p. 353
Definition: A small, ground-dwelling species (females $30-37 \mathrm{~mm}$; males $24-33 \mathrm{~mm}$) characterised by unwebbed fingers; poorly expanded terminal discs, first finger slightly longer than second, moderately long hind limbs (TL/S-V $0.59 \pm 0.04,0.52-0.68$); indistinct headstripe; mottled tubercular dorsum. Redescription of syntype RMNH 1888. Rockhampton, Qld,

Head longer than broad (HL/HW 1.18), Head length more than $1 / 3$ snout to vent length (HL/S-V 0.37). Snout prominent, projecting in profile (Fig. 8), slightly rounded when viewed from above and in profile. Nostrils slightly more lateral than superior, their distance from end of shout less than twice that to eye. Distance between eye and naris less than internarial span ($\mathrm{E}-\mathrm{N} / \mathrm{IN} \quad 0,83$), Canthus rostralis very slightly defined and straight. Eye relatively small and incon-

Fig. 8. Litoria inermis in life: a, Fossilbrook Ck, Qld and b, Borooloola, N,T.

Fig. 9. A, Palmar view of hand and B, plantar view of foot of Litoria inermis (SAM R19558).
spicuous, its diameter greater than eye to naris distance. Tympanum completely visible, its diameter about $2 / 3$ eye dianteter (Fig. 2).

Vomerine teeth on short oval elevations at 45° to midline between choanae. Tongue broadly oval. Fingers long and slender, unwebbed with well developed fringes. In order of length $3>1>4>2$ (Fig. 9A). Terminal discs poorly developed and not extending laterally bcyond fringes. Subarticular and palmar tubercles prominent. Supernumerary tubcreles on metacarpals not well developed.

Hind limbs long (TL/S-V 0.62). Toes in order of length $4>3>5>2>1$ (Fig. 9 B). Webbing not reaching midpoint of penultimate phalanx on toe 5 and to subarticular tubercle of antcpenultimate phalanx on toc 4. Subarticular tubcrcles prominent. Small oval inner and rounded outcr metatarsal tubercles. Dorsum weakly tubercular; abdomen and back of thighs finely granular; submandibular area smooth. Moderately developed tarsal fold and weakly developed supratympanic fold.

Colour in preservative: dorsum brownish with darker brown mottling. Very poorly developed indistinct lateral headstripe only visible behind eye through tympanum to level of forearm. Well developed cream mottled patch at anglc of jaw; edge of mouth surrounded by white variegations with dark pigment granules. Hind portion of thighs reticulated brown on grey, ventral surface discoloured brown.

Material examined: Two syntypes: RMNH 1888, Rockhampton, Qld; AMNH 23582, Bowen, Qld and 184 additional specimens.
Queensland: SAM R19562-70, Fossilbrook Ck; SAM R19559-61, N of Maryborough; SAM R19557, Cape Hillsborough; SAM R19556, Mourangee Stn; SAM R12118-23, Leggitts Lagoon nr Cooktown; SAM R11033-4, Cooktown: QPN N32440-I, Coen; QPN N32341, 32347, Coen Airport; QPN N32494, Silver Plains Hstd; SAM R19571 (16) Eight Mile Ck floodplain, Conjuboy Stn; QM J27188-9, approx. 50 km S Winton; QM J27631, J32522, J32524, J32526, Alice R., $7 \mathrm{~km} \mathrm{~S}, 23 \mathrm{~km}$ W Townsville; QM J27688, J32536-8, J32540-2, B1ack R., " 1 km D, 3 km E Yabulu; QM J35768, Ferguson Quarry 'via' Maryborough; QM J35770, Burgowan Minesite No. 13, E of Howard: QM J35771. Ferguson, 6 km N Maryborough; UAZ A237, Mourangee Stn, Eudungalba; UAZ A527 Mcllwraith Ra.; UAZ A528, N of Maryborough; QM J41012, Lakefield N.P., at Lakefield Hst; QM J41011, Coen Airport.
Northern Territory: SAM R23285-300, SAM R23343-52, SAM R23312-25, R23352, R23284, Jabiru Airstrip; SAM R23303-10, Ja Ja Borrow Pit at Pan Continental Camp entrance; SAM R23327-9, McArthur R, on Bridge to McArthur River Stn; SAM R23302, Cannon Hill; SAM R23301, Surprise Ck, 40 km N McArthur R. Stn; SAM R9835, Berry Springs; SAM R9105 145 km N Mainoru; SAM R23283, 50 m N Retention Pond No. 2 Djalkmarra Ck; SAM R23338-42, Katherine R., 7 km W Katherine Gorge N.P., SAM R23326, 14 km N Katherine; SAM R23330$3,13 \mathrm{~km}$ N Katherine; SAM R23311, 6.4 km N Katherine; SAM R23334-7, 4 km N Katherine; UAZ A616, 100 m E Jim Jim turnoff, Arnhem Highway; UAZ A617, Jabiru Airstrip; UAZ A618, Jabiru East turnoff, Arnhem Highway; NTM R10093-7, 4 km N Katherine.
Western Australia: UAZ A241-2, A529, Mitchell Plateau; UAZ A530, Parry Ck/Kununurra Rd; WAM R81873-83, Granite Ck, 16 km NE Lake Argyle Village; WAM R81884-88, Kununurra; WAM R81890-99, Mitchell Plateau; WAM R81889, Mitchell Plateau campsite; WAM R81901-2, Ivanhoe Crossing; WAM R81900. Hidden Valley, Kununurra; KU192460-4, Mitchell Plateau; KU192465, Four Mile Creek, 32 km ESE Kununurra.

Variation

Small frog (males 24-33 mm, femalcs 3037 mm S-V). Head longer than broad (HL/ HW $1.26 \pm 0.062,1.11-1.40$). Head length $1 / 3-\frac{1}{2}$ snout to vent length ($\mathrm{HL} / \mathrm{S}-\mathrm{V} 0.39 \pm$ $0.017,0.34-0.43$). Hind limbs long (TL/S-V $0.59 \pm 0.044,0.51-0.68) . \mathrm{E}-\mathrm{N} / \mathrm{IN}$ highly variable ($0.91 \pm 0.098,0.73-1.21$).

The syntype is discoloured and soft. Freshly preserved specimens difter from it in the presence of supernumerary tubercles on all metacarpals, and in having coarsely to poorly tubercular grey dorsurn mottled with black and brown patches. The lateral headstripe is always poorly developed, sometimes evideat anteriorly to the cye and nostrils and through and above the tympamm posteriotly. The ventral surfuce is psile cream, Baek of thighs darkly pigmented with small patches of pale ground colour (Fig, 4).

Osteology

Skull relatively fragile with moderately assified neurocranium. Sphencthmoid moderately ossified extending between masals for about $\frac{3}{4}$ of their length dorsaliy: ventrally sphenethmoid not extending between prevomers. Nasals not overlying sphenethmoid. Proolic and exoccipital fused. Exoccipilal not Fused dorsomedially or ventromedially. Crista parotica moderately well developed, short and stocky, not articulating laterally with poorly expanded otic ramus of squamosal (Fig. 10A). Frontoparietal fontanelle extensive, rectangular extending anteriorly for about $\frac{z}{z}$ orbit, Poslerior margin of fontanelle not delineated because of lack of medial ossification of exoccipital, Orbital edges of frontoparietal straight,

Nasals moderately large. Maxillary process of nasals moderately sharp, not articulating with well developed preorbital process of pars
faciatis of maxillary. Palatines moderately long, broad faterally, slender and acuminate medially, overlying sphenethmoid. Parasphenoid rahust; broad culitiform process reaching almost to level of palatines; alae long, moderately broad, just overlapped by medial arm of pterygoid.

Pterygoid moderately well developed with anterior arm making short contact with palatal shelf of maxillary (Fig. 10B), No prerygoid process. Medial atm of pterygoid moderately long, not in bony contact with prootic region. Quadratojugal slender and fully articulated. Squamosal moderately robust. Olic ramus slighty longer than zygomatie ramus. Maxillary and premaxillary dentate. Preorbital process of moderately shallow pars facialis of maxillary well developed. Alary processes of premaxillaries elongate laterally and curved posteriorly. Palatine processes of premaxillaries well developed, not abutting medially, Prevomers reduced slightly anteromediatly; not articulating or overlapping sphenethmoid, Dentigerous processes short, horizontally oriented. Bony columella present.

Pectoral girdle arciferal, moderately robust Omosternum and xiphisternum present. Clavicles sfender and abutting medially. Coracoids moderately separated. Scapula bicapitate, slightly shorter than clavicle. Suprascapula ahout 2/3 ossified.

Eight procoelous nonimbricate presacral vertebrac. Medial dorsal ossification incom-

Fig. 10. A. Dorsial and B, ventral view of skall of Litoriat immomis (UAZ A528)
plete on presacrals I, II and III. Relative widths of transverse processes: III $>$ II $>$ IV $=$ sacrum $>\mathrm{V}>\mathrm{VI}>\mathrm{VII}>$ VIII. Sacral diapophyses moderately expanded, ilia extending anteriorly beyond expansion. Bicondylar sacrococeygeal articulation. Well developed crest extending a length of urostyle.

Phalangeal formula of hand $3,3,4,4$; well developed bony prepollex. Phalangeal formula of foot 3,3,4,5,4; well developed bony prehallux. Terminal phalanges claw shaped.

Variation

Ossification of the sphenethmoid varies between specimens-the foregoing description applies to minimal ossification of the rooting
a

b

Fig. 11. a, Dorsal and b, lateral views of embryo at stage 20, and c, dorsal and d, Jnteral views of larva at stage 36 of Litoria incermis, Total length of embryo 4.5 mm , body length 1.9 mm , total length of larva 30.5 mm , body length 12.5 mm.

Eig. 12. Mouthparts of a larva, stage 37, of Litoria inermis from Blencoe Falls, Qld. Scale har $=1 \mathrm{~mm}$.
bones. In other specimens, the sphnethmoid is well ossified extending between and to the anterior extremities of the nasals dorsally and anteriorly to the vomerine leeth ventrally, Variation also occurs in the degree of crenulation of the medial odges of the frontoparietals and in the length of the cultriform process of the parasphenoid.

Breeding Biology

Calt: Litoria inermis usually calls from open gravelly or sandy areas, often on steep sloping banks within $1-2 \mathrm{~m}$ of water, At Jabiru, males were heard calling between the middle of November and the middle of March (Tyler et al. 1983),

The short call is a staccato note with hitfic tuning: the long call is at least twice the duration of the short call (Table 1, Fig. 6).
Early development: Described by Tyler et al. (1983). The morphology of embryos at stage 20 and larvac at stage 36 is shown in Fig. 11. The eyes are more dorsally situated than in larvae of other members of the complex. The mouthparts of a larvae at stage 37 are shown in Fig. 12.

Distribution

Litoria incrmis is found across the north of Australia from Mitchell Plateau in W.A. to Cape York in Qld and south to Rockhampton (Fig. 13). Syntypes were collected at Rockhampton and Bowen in Queensland.

The species is an open forest dweller and tends to avoid thick grass, preferring open areas of sparse, low vegetation. In Queensland L. inermis is sympatric with L. latopalmata

Fig. 13. Distribution of Litoria inermis in Australia. Open symbols are literature records and closed symbols are specimens examined during this study. Stars indicate type localities.
and at Jabiru in the Northern Territory with both L. tornieri and L. pallida.

Comparison with other species

Litoria inermis can be distinguished from all terrestrial congeners, except for members of the L. aurea, L. freycineti and L. latopalmata species groups, by the poorly expanded terminal discs on its fingers and toes. It is distinguished from members of the L. aurea species group by gross size and habitus and from the L. freycineti group by its relatively shorter hind limbs. From L. tornieri, L. latopalmata and L. pallida, L. inermis is distinguished by its tubercular dorsum, finely reticu. lated thigh markings and poorly developed canthal streak. The pulse repetition rates of both long and short calls of L. inermis are higher than those of the other species in this group.

Litoria tornieri (Neiden)

FIGS 2, 4, 6, 7, 14-17
Pelodytes affinjs Gray, 1842, Zool. Misc. London 3:56
Hyla affinis: Boulenger 1882 p. 413
Hyla tornieri: Nieden 1923 (nomen substitutum pro Pelodytes affinis) p. 228
Hyla latopalmata latopalmata: Copland 1957 (partim) p. 94
Litoria latopalmata: Tyler 1971 (parim) p. 353
Litoria tornieri: Cogger \& Linder 1974 p. 71
Litoria affinis: Duellman 1977 p. 114
Definition: A small ground dwelling species (males 28-36 mm, females $27-34 \mathrm{~mm}$) characterised by basal webbing between the fingers, poorly developed terminal discs, first
finger longer than second, moderately short hind limbs (TL/S-V $0.57 \pm 0.04,0.49-0.68$), well developed lateral headstripe, continuous stripe along outside edge of tibia, smooth brown/grey dorsum, reddish in breeding season.
Description: Based on SAM R18686 a male spccimen collected in a pool 800 m W of Gulungul Creek Crossing, Arnhem Highway, N.T. by G. A. Crook on 1.ii.1979.

Head longer than broad (HL/HW 1.30); head length more than $1 / 3$ snout to vent length (HL/S-V 0.4). Snout prominent, projecting in profilc; slightly rounded when viewed from above and in profile. Nostrils more lateral than superior, their distance from end of snout $2 / 3$ that from eye. Distance between eye and naris less than internarial span (E-N/IN 0.84). Canthus rostralis slightly defined and curved, its nature accentuated by dark rostral stripe. Eye rclatively small and inconspicuous, diameter about $1 \frac{1}{2}$ times eye to naris distance. Tympanum completely visible, diameter $2 / 3$ eye diameter (Fig. 15).

Vomerine teeth on short elevations between choanae. Tongue broadly oval.

Fingers long and slender lacking lateral fringes; in order of length $3>4>1>2$ (Fig. 14). Basal webbing between fingers 2 and 3 and 3 and 4. Terminal discs poorly developed, not extending laterally beyond the cdges of penultimate phalanx. Subarticular and palmar

Fig. 14. A. Palmar view of hand and B, plantar view of foot of Litoria tornien (SAM R19572).

Fig. 15. Litoria tomicri, in life (Jabiru, N.T.).
tubereles prominent. Hind limbs moderately long (TL/S-V 0.59). Toes in order of length $4>3>5>2>1$ (Fig. 14). Webbing reaching subarticular tubercle on penultimate phalanx of toe 4. Subarticular tuhereles prominent. Small oval inner and tiny rounded outer metatarsal tubercles.

Dorsum smooth, ahdomen coarsely granular. Suhmandibular area smooth and pigmented. Moderately well developed tarsal fold on proximal portion of tarsus. Poorly developed supratympanic fold.

Colour in preservative, brownish grey with conspicuous very dark headstripe; anteriorly to nostril, headstripe extending diffusely to tip of snout; between eye and nostril headstripe sharply delineated and interrupted by pale preocular bar (Fig. 2) behind eye, stripe extending above and through tympanum to insertion of forearm; two dark patches prominent in axillary region. Broad white stripe from preocular har to posterior extremity of mandible.

Backs of thighs heavily pigmented by continuous dark bands separated by continuous stripe and occasional patches of pale ground colour (Fig. 4).

Continuous dark brown stripe along outside edge of tibia and ventral surface of tarsus. Prominent dark brown pateh on wrist and edge of forearm.

Well developed glandular nuptial pad on thumb.
Matcrial exarnined: Holotype, BMNH 1947.2.22. 73, Port Essington, N.T., and 50 other specimens. Northern Teritory: SAM R18653-73, Jabiru Airstrip; SAM R18687, R16779. Katherine R., 7 km W Katherine Gorge; SAM R9072, 5 km N Mainoru: SAM R14775E,C, 16 km S Hooker: SAM R18679, Cannon Hill; SAM R18682,

Birndu; SAM R18685, E Gulungul Ck; SAM R18683, Arnhem Highway nr Mudginberry Fence; SAM R18684, Coonjimba Billabong; SAM R18680-1, Retention Pond No. 2, Djalkmarra Ck; SAM R19572, Buffalo Billabong, 9 km NW Jabiru; AM R32071-3, R32114-6, Port Essington; SAM R18676-7, 16 km S Woolner; SAM R18678, Berry Ck; UAZ A232, Batchelor, Finnis River; UAZ A523-4, A610-2, Jabiru Airstrip; Western Australia: WAM R57194, Pago Mission Ruins, Mission Cove, Napier-Broome Bay: WAM R50670-1, Drysdale R. N.P., $14^{\circ} 44^{\prime}$ S. $126^{\circ} 56^{\prime} \mathrm{E}$,

Variation

Small frog (males $27-34 \mathrm{~mm}$. females $28-$ 36 mm). Head longer than broad (HL/HW $1.23 \pm 0.12,1.09-1.35$). Head length $1 / 3-\frac{1}{2}$ snout to vent length ($\mathrm{HL} / \mathrm{S}-\mathrm{V} 0.37 \pm 0.02$, 0.31-0.42). Hind limbs short (TL/S-V 0.57 $\pm 0.04,0.49-0.68)$. Anterior head region relatively broad with variable E-N/IN (0.75 \pm 0.10, 0.61-1.03).

As indicated by these measurements, L. tormieri exhibits limited variation in body form and has the shortest hind limbs of all members of the L. latopalmata species group.

In colouration, L. tornieri is the least variable member of the species group. Mottling of the dorsal and dorsolateral surfaces has not been observed, hut in preservative the eolour tends to fade and varies from brownish to grey. This variation is probably a reflection of the breeding condition of the specimens as sexually mature ealling males tend to be a distinct reddish-brown colour.

The uninterrupted, narrow, dark stripe on the anterior edge of the tibia is consistently present and is an excellent character distinguishing this species from sympatric members of the L. latopalmata species group. However, the dark pigment spots in the axilla are sometimes absent.

Osteology

Skull relatively fragile with moderately ossified neurocranium. Sphenethmoid moderately ossified extending between but not anteriorly to nasals dorsally and just anteriorly to dentigerous processes of prevomers ventrally. Nasals lying alongside not overlapping sphenethmoid (Fig. 16A). Prootic and exoccipital fused. Exoccipital not ossified dorsoor ventromedially. Crista parotiea well developed, short and stocky. Otic ramus of squamosal not articulating with distal extremitics. Frontoparictal fontanelle extensive,

Fig. 16. A, Dorsal, and B, ventral views of skull of Litoria tornieri (LLAZ A681).
reaching anteriorly to level of palatines; posteriorly undelineated becouse of lack of medial ossification of exoccipital. Orbital edges of frontoparietals straight.

Maxillary process of nasals moderately sharp, not articulating with well developed preorbital process of pars facialis of maxillaryPalatines expanded distally, slender medially overlying sphenethmoid. Parasphenoid slender; cultriform process long, slender reaching between palatines; alae long, at right angles to cultriform process and overlapped by medial arm of pterygoid.

Plerygoid moderately robust in moderately long contact with moderately developed pterygoid process of palatal shelf of maxillary, Medial arm long, not in hony contact with prootic region.

Quadratojugal slender. fully articulated. Squamosal slender, otic ramus expanded and slightly longer than acuminate zygomatic ramus Maxillary and premaxillary dentate Preorbital process of moderately shallow pars facialis of maxillary well developed, Alary processes of premaxillaries elongate laterally curved posterolaterally. Palatal processes of premaxillaries well developed, not abutting medially. Prevomers slighty reduced medially. Dentigerous processes short, angled slightly to midine. Bony columella present.

Pectoral girdle arciferal and moderately robust. Omosternum and xiphisternum present. Clavicles slender, equal in length to seapula
and abutting medially. Coracoids moderately separated. Suprascapular about $2 / 3$ ossified.

Eight prococlous nonimbricate presacral vertebrae, Medial dorsal ossification incomplete on presacrals I, II, II and IV, Relative widths of transverse processes III $>$ IV $>$ II $>$ sacrum $>V>$ VI $>$ VIII $>$ Vll. Sacral diapophyses moderately expanded, ilia extending anteriorly beyond expansion. Bicondylar sacrococcygeal articulation. Well developed crest extending $\frac{1}{2}$ length of urostyle.

Phalangeal formula of hand $3,3,4,4$; well developed bony prepollex. Phalangeal formula of foot $3,3,4,5,4$; well developed bony prehallux. Terminal phalanges knobbed.

Variation

Well expanded otic ramus of squamosal lies slongside crisla parotica in some specimens. Pterygoid process of palatal shelf of maxillary absent to variously developed.

Breeding Biology

Call: Males call from cover either under leaves or at the base of grass tussocks within 3 m of water. At Jabirh, N.T., males were heard calling in early November and early March (Tyler et al. 1983). Calls are well tuned, with most of the energy below 2000 Hz (Table 1, Fig. 6).
Early development: Tyler el al. (1983) describe eggs and larvae of this species. Embryos at stage 20 and larvae at stage 33 are illustrated in Fig. 17.

Fig. 17. a, Dorsal and b, lateral views of embryo it stage 20 , c, dorsal and d, lateral views of larva at stage 33, of litorid tommeri, Total length of embryo 4.5 mm . body lengls 2.3 mm , total length of larva 28.5 mm , body length 11.0 mm .

Distribution

Litoria tarnleri has the most restricted distribution of the ground hylid species (Fig 7), The type locality is Port Essington on the Coburg Peninsula in the Northern Territory and the species is confined to the north of the Northern Territory and Western Australia. The southernmost record is 16 km S of Hooker. N.T. The species is an open forest dweller nod is sympatric with L. inermis and L. pallida at Jabiru, N'T.

Comparison with other species

Litorla sormierl can be distinguished from all terresirial congeners, other than the L. aurca,
L. freycineti and L. Iatopalmata species groups, by the unexpanded terminal dises on the fingers and toes. From nembers of the L. aurea group it can be distinguished by their gross size and habitus and from the L. freycineti group by relatively shorter hind limbs. From L. pallida, L, inermis and most specimens of L. latopalmata, L. tornieri can be distinguished by the presence of an uninterrupted brown stripe on the ourer side of the tibia. From those specimens of L. Latopalmata possessiag such a stripe, L. tornieri can be distinguished by its less expanded dises (not extending laterally beyond the fringes of the penultimate phalanx), its smaller size (males 27-34 mm , females $28-36 \mathrm{~mm}$, compared with males $29-39 \mathrm{~mm}$, females $36-42 \mathrm{~mm}$) and its relatively chorter hind limbs (TL/S-V 0.57士 0.04 in L. comiert. 0.64 ± 0.03 in L. latopalmata). L. tomieri has longer short calls than any other member of the group.

Litoria pallida sp. nov.
FJGS 2, 4, 6, 18-22
Litoria Vatopalmalus Tyler 1968 (parim) D. 719
Holotype: SAM R19555, a male collected at Gulungul Creek Crossing, Arnhem Highway, N.T.. $12^{\circ} 39 \mathrm{~S}, 132^{\circ} 52 \mathrm{E}$, by G. A. Crook on 10.xii. 1978.

Definition: A small highly variable ground dwelling species (femate $31-37 \mathrm{~mm}$. male 27 34 mm) characterised by unwebbed fingers, poorly expanded fingers dises, first finger considerably Ionger than second: long hind limbs (TL/S-V 0.62 ± 0.04); well developed stripe on side of head; smooth or mottled dorsum. sometimes faintly Lubercular.
Dercription of holorype: Head longer than hroad (HL/HW 1.18): head length more than one third snout to vent length (HL/S-V 0.38). Snout prominent, projecting in protite (Tig. 2) and slightly rounded when viewed from above and it profile. Nostrils more lateral than superior, distance from end of snout 7 that from eye. Distance between cye and naris equal to internarial span (E-N/IN 1.00). Canthus rostralis moderately well delined and straight, its nature accentuated by dark rosiral stripe, Eye relatively small and inconspicuous, diameter slightly greater than dye in llatis distance. Tympanum completely visible, diamerer about I eye diameter (Fig. 18),

Fig. 18. Litoria pallida, in life (Jabiru, N.T.).

Vomerine teeth on short oval elevations between anterior edges of choanae. Tongue broadly oval.

Fingers moderately long and slender lacking lateral fringes (Fig. 19A); in order of length $3>1>4>2$. Fingers unwebbed. Terminal discs poorly developed, not extending beyond lateral extremities of penultimate phalanx. Subarticular and palmar tubercles prominent. Many supernumerary tubercles present.

Hind limbs long (TL/S-V 0.62). Toes in order of length $4>3>5>2>1$ (Fig. 19B). Webbing reaches midpoint of penultimate phalanx on toe 5 and to level of subarticular tubercle at base of antepenultimate phalanx of toe 4. Subarticular tubercles prominent. Small oval inner and smaller rounded outer metatarsal tubercles.

Dorsum smooth; abdomen, pectoral region and undersurface of thighs coarsely granular; submandibular area smooth. Well developed proximal tarsal fold; moderately developed supratympanic fold.

Colour in preservative: dorsum grey and hind limbs brown with conspicuous very dark stripe extending from nostril to eye, interrupted

Fig. 19. A, Palmar and B, plantar view of hand and foot of Litoria pallida (SAM R19539).
by a white preocular bar. Posteriorly stripe extends through and above tympanum, terminating above insertion of forearm. Disrupted dark spots extend halfway along flank. White stripe extends from lower margin of eye to insertion of forearm.

Thigh markings dark, separated from ground colour by pale yellow patch contigurus with irtegular dorsal margin; dark markings commonly disrupted and extensively marked by lighter marking iof. Fig, 4). Disrupted frown patches extend along edge of tibia; plantar surface of larsus and foot uniformly browh.

Brown glandular bilobed nuptial pad; throat moderately suffused with pigment.
Dimensions of holorype; $S-\mathrm{V} 31.7 \mathrm{~mm} ; \mathrm{Tl}$. $19.7 \mathrm{~mm} ; 11 \mathrm{~L} 12.0 \mathrm{~mm}$; HW 10.2 mm ; E-N $3.1 \mathrm{~mm}:$ IN $3.1 \mathrm{~mm}:$ E $3.7 \mathrm{~mm}: T 2.9 \mathrm{~mm}$
Etymalogy: The specific name is derived from the Latin pallidur meaning pale, ashen, in reference to the predominant colour of the dorsum.

Variation

There are 121 paratypes:
Nothern Tertitory: SAM R19539, $4 \mathrm{~km} . \mathrm{W}$ Baralil Ck, 30, si 1978, G. A. Crook. M, Divies, M. J. Tyler (illastrated): SAM R19549, 40 km N Ellioll, T6.xii-1980, M. Davies, A. A. Martin M 1 Tyler; SAM R19451-4, Jubiru Airstrip. 7xii.1979. G. A Crabk: SAM R19455 7. Jabiru Sirstrin, 4.sil1978. G. A. Crook; SAM1 R1945k. R19491-504. sit m N Retention Pont No. 2 , Dialkmann Ck, Raneer Urantum Lease, S:Xih. 1979, LE A. Crook; SAM R19459-62, small pools. 107) tit upstream Counjimbu Billuhong. S xii. 1979 . Q. A. Grook SAM R10463. R1947-90, Cannorn Fill lyini.197c. M King: SAM R19464, soak from ore body, J;atiru, 29,x,1978, M. Davies. M. I. Tver: SAM RIy465, 4 km W Baralil Ch, 30.xi, 1978, M. Davick, M, I Tyler: 5AM R1946toy) MeArthur River bidge on rowd to MeArchur N. Sint 24 ix. 1979 . © A. Crook; SAM RI9470-1. Gutungul Swamp, 150 ml SE Gulungal CK Crossing. Atpliem Hiehway, 7.1i.1979, G. A. Grook: SAM R19472-3, 800 m W Culungul Ch Crose ing. Amhem Highway, 1ii.1479, G. A. Crook; SAM RIU50fi Carinjimina Billabong, 23, x. 1978 , (G. A. Cromb; SAM R19507, Jahiru Airsliph, 29.xi. I978, M, Davies, M, f. Tyler: SAM R195113. Collyer J.agoon- Carpentario Highway. 26.ix. 1977, G A. Crook. W Zeider; SAM R19514-33, Like Woods, or Eillot, 5.x.1977, O. A. Crook, W. Zeider: SAM R19940-48. Bullman Hstel 8.viii.196fi R. Halwards; SAM R9062-3. 1.33 km N Miñoru. 23.xiii.1967, R. Edwarise Fleming: SAM Rla775, R19508-9, $16 \mathrm{kmo} \mathrm{S} \mathrm{Hooker}, \mathrm{5vi}$ 1975. A Rohinson: AMNH 108333-4. Cooniimba Billnhong, 23.x.1978. Gi. A. Crook: WAM R73573. Ia da borrowpia at entanace to Pan-Conlinental Campsite, $28 . x i-1977$. M. Davies, M. 1. Tyler: KUJ88433-4, Canmon Hill 28 xi.1977. M Davies M, 1, Tyler: 4M R97183-5, Jat Ji bormowpil ni Pan Continental Camp, $28 . x \mathrm{i}, 7977 \mathrm{M}$, Davics, M, 1. Tylef: NTM R18098.9. Cannob Hill, 28.8i.1977.
M. Daviex M. I. Tyler, QM J39256-y. Ja Ja borrownit at entrance to Pan Conlinental Campsile, 28, xi, 1977. M, Divies M, J, Tylor, SAM R19550-1, Jabiro Airstrip, J0i, 1981, M. Cappo, M. Dhvies, M, I. Tyler (cleared and stained); SAM R19552. 100 m E lim Jim turnofl Arnhem Highway, प्रi.1981. M. Cappo, M. Davies. M J. Tyler, G. E, Watson (cleared and stained); SAM R19553-4, roadside pool, 800 rin W, Gulungol Crossing, Arnherg Higbway, Lii.1979, G. A. Crook (Lleared and stained)
Cucensland: SAM R14774, R19510, 19 km N Laura 23.x.1974. A. R. Robinson: QM J41013-6. 141018. Coen Airport, G.iii.1979, R, G. Alherton, K. R. McDonald: QM 141019, Lakefield N. P.. ni 1 akelield Hstd, 25,ii.198I, B, I, [yon, K R MeDunald (recorded): QM 541017, Coen Airport, 6.iii.1979, R. G. Athetton, K. R. McDonald (recarded).

Western Australia; SAM R19535, Camballin. 18.ij.1980, M. Davies, A. A, Martin, M, J. Tyler: SAM Ri9536-N 175 km E Broome; 17.ii.1980, M. Dayes. A. A. Martin. M, 1. Tyler; WAM R73574. ${ }^{3} 0-35 \mathrm{~km}$ S Dunean Highway/N HighWay Jcn, 5ii. 1978 , A. A. Martin. M. J. Tyler, WaM R73577. Hidden Valley, Kinumurra, 1.ii_1978, M: Davies, A. A, Martim, M, 1. Tyler: WAM R73575, Camballin, $18.81,1980$, M, Divies, A. A. Martin. M. 1. Tyler: WAM R73576, 175 kin E Broome. 17.ii1980, M. Davies A. A. Martin. M. J. Tyler.

Adult males measure $27-34 \mathrm{~mm}$ aud females $3 \mathrm{~L}-37 \mathrm{~mm}$. Hind limh length is variable, but usually moderately long $0.62 \pm 0,04,0,53-$ 0.72) ; head length is always longer than head width (1.29上0.06, 1-17-1.42) and the head length is always greater than one third of the snout to vent length (HL/S-V $0.39 \pm$ $0.02,0.36-0.42$). Eye to naris distance to inter. narial span ratio highly variable ($\mathrm{E}-\mathrm{N} / \mathrm{IN}$ $0.89 \pm 0.10,0.68-1.12$) but usually less than 1 .

Variation occurs in dorsal colouration and texture. In some specimens dorsum grey/ brown with hrown mottlings (Fig. 18), in others. dorsum and dorsal surface of thighs grey. Disrupted dark markings along edge of tibua not always present. nor are markings on anterior surfaces of thights. Motling on back can be conspicuous or patchy. In some specimens dorsum weakly tubercular with tubereles aligned longitudinally along back. White stripe below eye appears cream in some specimens and well-developed variegations can be found around lips.

Osteology

Skull moderately well ossified; sphenethmoid well ossified extending to anterior ex-

Fig. 20. A, Dorsal and B, ventral view of skull of Liloria pollida (SAM R19553),
tremities of nasals dorsally and just anteriorly to dentigerous processes of prevomers ventrally. Nasals overlying sphenethmoid along their medial edges. Prootic and exoccipital fused but medial fusion absent in exoccipital, Crista parotica moderately well developed, short and stocky, barely overlapped laterally by moderately expanded otic ramus of the squamosal. Frontoparietal fontanelle extensive, seaching anterior extremity of orbit (Fig. 20A). Posterior margin undelineated due to lack of medial fusion of exoccipital. Orbital edges of frontoparietals straight.

Nasals moderately large, widely separated medially. Maxillary processes acuminate and articulate with well developed preorbital process of pars facialis of maxillary. Palatines expanded distally, very slender and acuminate medially overlying sphenethmoid.

Parasphenaid robust, Cultiform process moderately broad, irregularly truncate and reaching almost to level of palatines (Fig. $20 \mathrm{~B})$. Alae moderately long, at right angles to cultriform process and barely overlapped by medial arm of pterygoid. Pterygoid moderately robust Atterior arm in moderately long contact with poorly developed pterygoid process ot palatal shelf of maxillary. Medial arm slightly expauded distally.

Quadfatojugal slender and fully articulated Squamosal moderately robust. Zygomatic ramus slender and slightly shorter than moderately expanded otic ramus of squamosal. Maxillary and premaxillary dentate. Palatine
processes of premaxillaries well developed, not abutling medially. Alary processes of premaxillaries elongate laterally, curved posterolatcrally. Prevomers reduced slightly medially. Dentigerous processes short, horizontally oriented. Bony columella present.

Pectoral girdle arciferal and moderately robust. Omosternum and xiphisternum present. Clavicles slender and abutting medially, Coracoids moderately separated. Scapula slightly shorter than clavicles. Supraseapula about 2/3 assified.

Eight procoelous, nonimbricate, presacral vertebrae, Medial. dorsal ossification incorsplete on vertebrac I, II, III and IV. Relative widths of transverse processes: III $>$ IV $>$ II $>$ sacrum $>$ V $>$ VI $>$ VII $>$ VIII. Sacral diapophyses moderately expanded, ilia extend anteriorly beyond the expansion, Sactococcygeal articulation bicondylar. Well-developed crest extending for about $\frac{a}{4}$ length of urostyle.

Phalangeal formula of hand 3,3.4.4. Welldeveloped bony prepollex. Phalangeal formula of foot $3,3,4,5,4$. Well-developed bony prehallux. Terminal phalanges claw shaped.

Variation

Well-developed preorbital process of pars facialis of maxillary not always articulating wilh maxillary process of nasal. Distal expansion of medial arm of pterygoid not occurting to same extent in all specimens. Degree of osejfication of sphenethmoid varies and hence its relationship with nasal and prevomers.

Breeding Biology

Calls Males eall in open areas within 1 m of water. At Jabiru, N,T., males were first heard calling in early November, and last heard in early March (Tyler et al. 1983).

This species shows the greatest differentiation between long and short calls, with the former baviag at least 10 times the duration of the latter (Table 1, Fig. 6). There are complex frequency shifts and multiple harmonic bands in both calls, and a considerably more exhaustive analysis is required to fully elucidate the call structure.
Early development: Tyler et al. (1983) have described development in this species (as

b

Fig. 21, a, Lateral ano b, dorsal view of embryo at stage 20 , and c, lateral and d, dorsal view of larva at stage 34 , of literia pallida. Tolat length of ernbryo 4.4 mm , hody length 2.3 mm . total length of larva 30 mm , hody length 10.5 min.

Fig. 22. Distribution of Litoria pallida in Australia. Star indicates type locality.
"Litoria sp. ar latopalmata"). An embryo at stage 20 and a larva at stage 34 are illustrated in Fig. 21.

Distribution

Litoria pallida is confined to the north of Australia from Broome in W, A, to Cape York in Qld, above latitude 20° (Fig. 22), Like the other ground hylid species it is an open forest dweller and is sympatric with L. inermis on Cape York and L. tornieri and L. inermis at Jabiru, N.T.

Comparison with other species

Litoria pallida can be distinguished from all terrestrial congeners except the 1 . aurea. L. freycineti and L. latopalmata species groups by the unexpanded dises on the fingers and toes. It can be distinguished from members of the L. aurea group by its size and habitus and from the \mathcal{L}. freycineti group by its relatively shorter hind limbs.

From L. tornieri, L. pallida can be distinguished by the absence of a continuous stripe along the outside edge of the tibia, and by its relatively longer legs (TL/S-V $0,62 \pm 0.04$ in L. pallida, 0.57 ± 0.04 in L. vornieri). It can be distinguished from I. latopalmata, the species with which it has been confused, by its smaller size (males 27-34 mm, females 31-37 mm compared with $38-37 \mathrm{~mm}$ males and $36-42$ mm females in L. latopalmatu) and poorly expanded dises which do not project beyond the lateral edges of the penultimate phalanges of lingers and toes. Litoria pallida can be distinguished from L. inermis by its welldeveloped lateral headstripe, strongly marked thighs and relatively smooth dorsum. As mentioned above, the call structure of L. pallida is particularly distinctive.
Other material examined: QM 127228, 12 nole Creek on Normanton-Karimba Rd. Qld; QM 128916, Norman Creek Rd to Norman; QM 131369, along Glen Esk Rd near Esk, Qld; SAM R9710, Strathgordon Hstd Qld, SAM R9720, Ldward River Hstd Qld; SAM R9660, Edward

River, Qld; SAM R4935 Mornington Island, SAM R8174, R19534, Malliman IIstd, N.T.: WAM R62889-62898, upper reaclics Mckinloy River, N,T: SAM R19632-47, McArthur River Bridge on road to McArthur River Sin; SAM R19622-31, Lake Woods, ir Elligit, N'T: SAM RI9614-21. Collyer Lagoon (just off Carpentaria Highway), NT.: SAM R19655-68, Coomatio Creek, 25 km N Adelaide River, N.T.. SAM R9417, Mitchell River Mission, Qld; SAM R9680, R9699, Hann River, N. Old: SAM R9885, R9876. R9841, Stralhgordon Hstd, QId: SAM R9714. Edward River Stn, Qid; SAM R971g, Lapra River, Qld; SAM R9868, R9852. Hant River/ Kennedy Rd, Qld

Discussion

Many cryptic species have been descrithed amongst those frogs exhibiting wide geographic ranges across the north of Australia and down the eastern seaboard. Since Moore's (7961) definitive work on the frogs of New South Wales, Litoria bicolor (Gray), Cyclorana ausIralis (Gray) and C. brevipes (Peters) have been shown to consist of such cryptic species pairs resulting in the resurrection or description of L. fallax (Peters), C. novaehollandine Steindachner and C. lonkipes Tylef \& Martin.

Gcound hylids of the Litoria latopalmata species group have for a long time been a taxonomic enigma, particularly because most Truseum material is poorly preserved and consists of subadult specimens. This latter situation is the result of collections being made itr the dry season, when many northern areas are secessible. For this reason, we have not included some of the material examined by us in the type series but have indicated its existence in the text.

The members of the L. latopalmara species group are extremoly homogeneous in their morphology, osteolagy, calls and developmental history Intraspecific variation is common in characters that are usually morphologically reliable such as rugosity of the dorsam, delineation of canthal stripes, tibial markings, back pattern, toe webbing (Moore 1961, Fry 1913, Copland 1955. Tyler 1968b) and development of suoermumerary subaricular tubercles. Osleologically the four species are very conservative. Interspecifie dilferences are slight and often ontogenetically controlled, therefore being of litte vialae.

The eall structure is unusuatly complex famong Australian frogs, Neither a typical call sequence nor a typical call duration can be
dofined, sinece talls are produced in very lang scries of heterogeneous nolts. Our categorization of call notes as long and short tepresemis only a first step in describing the acoustic repertoire, It is probable that different behavioural coles are served by the different edll elements; it may bc, for instance, that short calls have a territorial ind long calls a couri. ship function. However the sevyre limitations of our data preclude further spectulation.

From what is bnown of other lyylid sig. malling systems, if is probable thut pulse repetition rate is a key component indicating species idenlity (Littlejolin, 1971). The sympatric eastern taxis, I. latopatmata and L, inermis show clear differences in pulse tepetition rate of both long ame shorl calls, though the temperature variation in our samples maker definitive comparisons impossible. I. intermis also shows consistent differeaces in pulse re petition rate From L, tornieri and L. paltides. but the pulse repetition rate of the Jatter two is more similar. However they are markedly different in both number of pulses per note and note duration.

Larvae are very sitnilar and typical of AusIealian Liraria (Martior \& Watson 1977). Lfrorla inermis larvae ean the distinguished from those of L. pallida and L. pornieri by the dorsal rather than lateral position of the eyes. Litoria pallida and I_{c} tornieri facvac are indistinguishable until metamorphowis,

Failure to recognize the taxonomic complexity of this group has led to many anomalies in the literature Andesson (1913) for instance, reported Chiroleptes Inermits and Hyla affinks from the Kimbertey Division of Western Australia The former specimen is readily referrable to 1 . inermis as the description and illustration provided are clearly recomisable The latter specimen cannos be identified trom the written description and may represent either L. ternieri of L. pallida- both of which oscur in the area.

Tyler's (1968b) study of frogs of the \&. terkeuri complex in northwestern Australis inctuded representatives of all three northem speciex, as L. Tatopalmana. Huwever, Tyler delineated speemens from southern and central Queenstand and nopthern N.S.W, from all other specimens hy the dearee uf dilation of disek. the mare extensive webling and development of supernumetary tubereles on the patmat and plantar surface of the hands and feet exhibited by these spectimens. These
are the only mon-fugitive characters that we have frund teliable in our own analysis. Struughan (1969) referred to Andersson's specimens in his redefinition of 1 . inermix (as Hyla inermis) and commented on the relatively shorter tibia length compared with Queensland specintens. He considered this difference to he trivial in view of the wide geographic range of the species. Out studies have shown this difference to he expeedingly constant within the morthwestern Anstraliun specimens.
Of the 120 specimens measured from the Northern Territory and nordhern Western Ausiralia moly 13 had a TL/S-V >0.39 The mean was 0.57 ± 0.07 with a range of $0.51-$ 0.67 . The Queensland specimens showed consistendy longer hind limbs (TI. $/ \mathrm{S}-\mathrm{V} 0,63 \pm$ 0.0.4 $\{0,56-0.68$ тange7 $\}$ (see Fig 8), Adans ef of.! could not separate the populations electrophotetically and we camnot separate the calls of the (wo populations: Hence all specimens are referted to L. inermis

Cogecr \& Lindner (1974) remarked that the types of Litoria latopalmata and I. inermis were indistinguishahle. These specimens are in poor condition and distinguishing characterislics have become blurred, attheugh the synlype of 1 . inermis housed at the American Museum of Natural History and collected at Bowen is clearly idemifiable as that species.
Since both species ure sympatric at their lype locubities and since modern usage of the names 1. latopalmata and L. inermis in rererence to species found in NSW ., southerp Quemsland and South Australia causes no confusion (Moore 1961, Cogger 1979, Batker \& Grigg 1978, Tyler 1977, 1978), it would invife nomenclaturial chaos for question the validity of the currenl application of the names 1. Intopalmara and L. inermis,

The L. Intopalmata species group definition of Tyler \& Davies (1978) should be madificd in the following ways:

Dorsum browth, grey or reddish, usually bearing extensive ircesular markings of litte It any recognisable pattern.
Nakils well developed and separaled widely medially. Frontoparictal frotuncle extensive: crista parntica well developed. shor and stucky: utic ramus of squamosal slightly expanded, usually lying alongside crista parntien:

[^3]palatines expanded laterally, slender distally: prevomers reduced slightly medially, dentigerous processes short; preorbital processes of moderately shatlow pars facialis of maxillary well developed; palatinc processes of premaxillaries well developed, not abutting medially; alary processes of premaxiltaries extended taterally and inclined posterolaterally: quadratojugal fully articulated; otic ramus of squamosal generally slightly longer than zygornatic tamus; parasphenoid large, alae long and at right angles to cultriform process; maxillary and premaxillary dentatef bony columella preseni.

Pectoral girdle arciferal and moderately rohust; slender clavicles abutting medially: phalangeal formula of hand $3,3,4,4$; well developed bony prepollex; phatangeal formula of foot $3,3,4,5,4$ well developed bony prehallux: eight prococlous nonimbricate presacral vertebrate; dorsal ossification on anterior three vertcbrae always incomplete; transverse processes of presacral vertebrac long: sacral diapophyses moderately expanded; ilia extending anteriorly to expansion: well developed urostyle crest extending $2 / 3$ to 3 length of urostyle; sacrococcygeal arliculation bicondylar.
Compasition: Four species are included in the group: Litoria latopalmata Giinther, L. inermis (Peters), L. rornieri (Nieden) and L. pallida sp nov,

Key to species in Litoria latopalmata species group

1. Dorsum tubercular, lateral headstripe poorly defined. Thigh markings finelv reticulated \quad lo inermis Dorsum usually smooth, lateral headstripe well defined, particularly before the eye, thigh markings strongly reticulated

2
2. Finger dises not extending laterally heyond edge of penultimate phalanx

3 Finger discs extending beyond edge of perultimate pbalank

1. latompulmuaa
2. Stripe along edge of tarsus interripted 1. pallida

Stripe along edge of tarsus uninternupted

1. Armieft

Acknowledgments

We wish to acknowledge the following museums and their respective curators for the loan of material: American Museum of Nutural History for a syntype of L. inermis, Ausiralian Muscum for topotypic L. Iornieri,

British Museum (Natural History) for type of L. latopalmata and L, tornieri, Queensland Muscum for Queenstand ground hylid represenlatives, Ruksmuseum van Natuurlijke Historic, Leiden for a syntype of 1. inermis, and the South Australian Museum for aceess to its extensive collection of ground bylid material. We are grateful to Graeme Crook, Max Kine, Greg Miles, Michat Mahony and Keith MeDonald for the provision of fresh material and to Graeme Crook and Keith McDonald for calls and field noles of some Northern Territory and Queensland species respectively. Chris Miller is thanked for hours of painslaking tadpole reacing, Linda Truch is responsible for the superb illustrations. in Figures 2,3,9,14 and 19. Tadpole illastrations
are the work of Peier Preuss. Audiospectrographic analyses were carried out by Peter Harrison. We are grateful to Michael Tyler for hours of consultation and encouragement. Fietrl work was supported by an Australian Research Grant Committee award to M. J. Tyler, Amax Exploration, Utah Foundation, Ian Pottcr Eoundation and the Office of the Supervising Scientist East Alligator River Region, We are grateful to Michael Tyler. Johin Bishop, Bitl Duellman and Simon Fisher for assistance in the field. Ansett Aitlines of Australis iransported live material safely to Adclaide and we particularly thank Mr G . Mewett and Mr B. Pennington. Jean RussellPrice typed drafts of the manuscript and the final copy.

References

Andelesson. I . G. (1913) Results of Dr. I.. Mjoberg's Swedish scientific expeditions to Austrafia 1910-1913. TV. Batrachians. Kungt. Svenska Vetenskap. Hiull. 52(4) 3-26.
Barker, I \& Grigo, G, (1977) - A field guide to Australian frogs." (Rigby = Adelaide,)
Bougrnger, G. A. (1882) Catalogue of the Batrachia Salientia s. Ectudata in the Collection of the British Museum. Ind Edition. London, 1-503.
Cooots, H. G. (1979) "Reptites and amphibians of Australia." 2nd Edition. (Reed: Sydney.)

- \& Lindever, D. A. (1974) Frogs and Reptiles. in H. J. Foth \& I, H. Calaby (Eds) "Fauna Survey of the Port Essington Disirich, Coburg Penimsula, Northern Territory of Australia, CSIRO Division of Widalife Researeh Tech. Par. 128.1
Copland. S. J. (1957) Presidential address. Australian tree frogs of the genus Hylu. Panc: Whan Soc. N.S.W. 82, 9-108.
Davis, D, D, \& Gore, V. R, (1947) Cleating and staining specimens of simall imvertebrates. Fieldiana: Techniques 4, 1-16.
DUELIMAN. W. E (1977) Liste der rezenten Amphibien and Reptilico Hyrases centrolenidac, Pscudidaes. Dus Tierreich 95, 1-225.
Fry, D. B. (1913) On a Faranus and a frog from Burmett River, Qucemsland and a revision of the vartations in Limmodyastes dursalis Ciryy. Rec-Aust Mus. 10, 17-34.
GBSNER, K. L. (7960) A simplifed asble for staging anuran embryos and larvae with noter on identification. Therperologica 16, 183-190,
Lrtinsthin, M. J, (1971) A reappraisal of mating call differentiation in Myda cudaverina $\{=$ Hvla (aliforniae) and Hy/a mogilia. Evolimion. 25. 98.102

Martiv, A. A. \& Watsong. G. F. (1971) Life history as an ald to generic delimitation in the family Hylidac, Copreia (1971), 78-79.

MOore, 1. A. 1961) Froge of eastern New South Wales. Rull. Am. Mus. Nat. Hist, 121(3), 149386.

Nieden, Er. (1923) Anura 1 in C. Apstein, led. Das Tierreich. 46, 1-584.
PArker. H. W. (1940) The Australasian frogs of the family Leptodactylidac. Novitares Zool. 42. 1-106.
Slevin, J. R, (1955) Notes on Australiun amphibians. Proc, Califormia Acad. Sol 28, 355-392.
Straughan, I. R. (1969 Hyla incertis. (Pelers) a species hitherto erroncously referred to the leptodactylid genus Cyclorana (Anura, Hylidae/ Leptodactylidae), Zool, Mreded. 43(17). 207212.

Trueb, 1. (1979) Leptodactylid frogs of the genus Telmambius in Ecuador, with the description of a new species. Copeia 1979 (4), 714733.

Trier, M, I, (1962) On the preservation of Anuran tadpoles. Aust. J. Sci 25. 222.
, (19680) Papuan hylid frogs of the genus Ilylu. Zool. Verh. Rijksmus. Nat. Hist. Leiden 96, 1-203
or (1968 b) A laxonomic study of hylid frogs of the Hyla lesueuri comptex occurring in North-Wesiern Australia. Rec. 8. Aust Mus. 15(4), 711-727.
(1971) The phylogenetic significance of vocal sac structure in hylid fogs. Uniw. Kansas Mus, Nat. Hist, Puht, 19(4), 319-360.

- (1977) "Frogs of South Australia" 2nd Edition (Souch Anstralian Museum: Adelaide). (1978) "Amphibians of South Australia," (Guve Printer: Adelside.)
-, Crook, G, A. \& Davies. M. (1983) Reproductive bialogy of the frogs of the Magela Greek System, Northern Territory. Rec. S A14s. ATus. 18 (18), 415-440.
- \& Davies, M. (1978) Species gromps in the Australopapuan hylid frog genas Litoria Tschudi, Aust. I, Zool, Suppl. Ser (63) 1-47.

[^0]: ${ }^{4}$ Department of Zoology, University of Adelade. Hox 498 ©PO, Adetade, S. Aust 5001.

 + Deparimeni of Zoology, University of Mel. bourtie, Parkville, Vic. 305%.

[^1]: Fig. 6. Audiospectrograms of calls of males of the Litoria latopatmata species group. In each carse the iruces are, left to right: short call, 45 Hz bandpass; long cull, 45 Hz bandpass; short call, 300 Hz handpass; long call, 3010 Hz bandpass, A. I. latopalmata, 3 km W of Coonabarabran, N.S.W. wet bulb $9.5^{\circ} \mathrm{C}, \mathrm{B}$, L, inermis, Mitchell Plateau, W. A., wet bulb $24.0^{\circ} \mathrm{C}$: L. tornieri, Birndu, N.T., wet bulb $27.2^{\circ} \mathrm{C}: \mathrm{D}, 1$. pallida, Coen Airport. N, Q, wet bulh $25.8^{\circ} \mathrm{C}$.

[^2]: * Spots and diagonal lines on 300 Hz bandpass of C, L. tornieri are trace damage artifacts.

[^3]: ${ }^{1}$ Adams. Mi, Haverstock. T. R. Tyler. M ; \& King, M. Genctic differentiation among Atstratian loges of the famids Hylidaes, Wapoth ims

